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CHAPTER 5 MATRICES AND SYSTEMS OF LINEAR 

EQUATIONS 
 

In this Chapter, you will learn: 

 

• what is a system of linear equations, 

• the differences between a vector and a matrix, 

• the different types of solution for linear systems, 

• how to solve a system of linear equations of the form Ax = b, 

• how to solve a system of linear equations of the form Ax = x. 

 

 

1. INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS 

A linear equation in the variables  is an equation that can be written in the 

form of 

 
where b and  (known as the coefficients) are real or complex numbers, 

usually being defined in advance.  The subscripts n may be any positive integer.   

 

Example 1: Is this equation linear? 

 

It is linear because it can be arranged algebraically as 253 21 −=− xx  

 

Example 2: Is this equation linear? 

 
This equation is not linear because of the presence of the term .   

 

 Self-Test: 

 
Is this equation linear?  If it is not, state the reason? 

 

 

 

 

 

 

 

 

Self-Test: 

 
Is this equation linear? 
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A system of linear equations (or a linear system) is a collection of one or more linear 

equations involving the same variables of . 

 

 
                         

 
This system of linear equations consists of n number of variables 

and m number of linear equations. 

 

 

2. MATRICES AND VECTORS 

The essential information of a system of linear equations can be recorded compactly 

in a rectangular array called a matrix.  The plural form of a matrix is known as 

matrices. 

 

Example 3: 

     

       

   

with the coefficients of each variable aligned in columns, the coefficient matrix is, 

 

 
 

and the augmented matrix of the system is, 

 

 
The size of the matrix tells how many rows and columns it has.  This matrix has 3 

linear equations (given by the number of rows) and 3 variables (given by the number 

of columns).   

A matrix with only one column is called a column vector.  Similarly a matrix with 

one row is called a row vector.  Both are simply known as a vector. 

 

 

 

 

 

Notice the changes in 

the subscripts of the 

coefficients and x? 

The second linear 

equation is written as 
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Example 4: 

 
Vector u is a row vector in  and vector v is a column vector in .  The superscript 

of  indicates the size of the space that the vector is in. 

 

A vector in  has 2 entries and are said to be ordered pairs of real numbers.  A vector 

in  has 3 entries.  Thus, a vector in  has  entries.  Two vectors are said to be 

equal if their corresponding entries are the same.  Thus, a vector in  can never be 

equal to a vector in . 

 

Self-Test: 

Given  and .  Are these vectors equal? 

 

The sum of two vectors, u + v can be obtained by adding the respective corresponding 

entries of the two vectors, u and v.  A scalar multiple of vector u by c is when a vector 

u and a real number c is multiplied together becoming cu.   

 

Example 5: 

Given  and , find , , and . 

,         

and . 

A vector whose entries are all zero is called a zero vector and is usually denoted by 0. 

 

A system of linear equations can be written as a vector equation involving a linear 

combination of vectors. 

 

 

 

 

 

 

 

 

 

 

Notice that a vector is written in bold 

and non-italic. Vectors can also be 

written as  and   or  and . 

c is also known as a scalar. 
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Example 6: 

     

       

   

This system of linear equations is equivalent to: 

 

 
 

 

Side Notes: What is Linear Combinations? 

 

Given vectors  in  and given scalars , the 

vector y defined by 

 

 
 

is called a linear combination of  with weights 

. 

 

 

3. THE MATRIX EQUATION Ax = b 

 

Using the fundamental idea of vectors and matrices, a system of linear equations can 

be rephrase to become a matrix equation in the form of Ax = b.   

 

 

Definition: 

 

If A is an m x n matrix, with columns , and if x is in , then 

the product of A and x denoted by , is the linear combination of 

the columns of A using the corresponding entries in x as weights; that 

is, 
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Example 7: 

     

       

   

is equivalent to these vector equations: 

 
and is equivalent to 

 
in that it becomes a matrix equation of the form . 

 

 
 

 

4. SOLUTION SETS OF LINEAR SYSTEMS 

 

A system of linear equations (or linear system) has either: 

 

A solution of the system of linear equations is a list  of numbers that 

makes each equation a true statement when the values  are substituted into 

, respectively.    The set of all possible solutions is called the solution set of 

the linear system. 

x 

 

 

y 

x 

 

 

y 

x 

 
y 

One Solution 

Solution 

No Solution Infinitely Many 

Solutions 

Self-Test: 

So by now you should know that a system of linear equations can be written in three 

compact ways.  Try writing all three on the following linear system: 
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Finding the solution set of a system with two linear equations in two variables is 

equivalent to finding the intersection of two lines.  Equivalently, finding the solution 

set of a system with three linear equations in three variables is similar to finding the 

intersection between two planes in a 3D space. 

 

Example 8: What is the solution for this system of linear equations? 

 
                            

 and  are the solutions because when these 

values are substituted into , respectively where 

and , the equations simplify to  

and . 

 

A system of linear equations is said to be homogeneous if it can be written in the 

form of , where A is an m x n matrix and 0 is the zero vector in .   

 

Example 9: The following is a homogeneous linear system: 

     

                    

      

A linear system of   always has at least one solution, namely  (the zero 

vector in ).  When such system  has  as its only solution, the vectors 

 are said to be linearly independent. This solution of  is known as a 

trivial solution.   

 

When there exist other nonzero vectors x that satisfies .  Those solutions are 

known as the nontrivial solution of the homogeneous linear system.  The vectors 

 are said to be linearly dependent. 

 

 

 

 

 

 

 

 

Self-Test: 

Try to substitute the values 

into the linear system. 
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Definition: 

 

An indexed set of vectors  in  is said to be linearly 

independent if the vector equation 

 
 

has only the trivial solution, where .   

 

Otherwise, the set of vectors  is said to be linearly 

dependent if there exist , not all zero. 

 

A nonhomogeneous linear system is a linear system of .  This linear system 

has many solutions.  The solution set of  is the set of all vectors of the form 

, where  is a particular solution and  is any solution of the 

homogeneous equation .  This relation is true for all consistent equation of 

.  If a linear system has no solution, then it is said to be inconsistent.   

 

Theorem: 

If A is an m x n matrix, with columns , and if b is in , the 

matrix equation 

 
 

has the same solution set as the vector equation 

 
 

which, in turn, has the same solution set as the system of linear 

equations whose augmented matrix is  
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5. ELIMINATION PROCESS: ROW REDUCTION, ECHELON FORMS, 

PIVOTING 

 

The elimination procedure is a systematic procedure for solving linear systems.  The 

basic strategy is to replace one system with an equivalent system that is easier to 

solve.   

 

Three basic operations are used to simplify a linear system: 

1. Replace one equation by the sum of itself and a multiple of another equation. 

2. Interchange two equations. 

3. Multiply all the terms in an equation by a nonzero constant. 

 

Given a matrix, the basic idea is to perform those three basic operations on the rows 

of a matrix.  Two matrices are said to be row equivalent if there is a sequence of 

elementary row operations that transforms one matrix into the other.  If the augmented 

matrices of two linear systems are row equivalent, then the two systems have the same 

solution set. 

 

Example 10: 

2 9

2 4 3 1

3 6 5 0

x y z

x y z

x y z

+ + =

+ − =

+ − =

 

This linear system can be rewritten as an augmented matrix, 

1 1 2 | 9

2 4 3 | 1

3 6 5 | 0

 
 −
 
 − 

 

and by means of the three basic row operations, it is row equivalent to, 

1 0 0 | 1

0 1 0 | 2

0 0 1 | 3

 
 
 
  

 

This can be written as  

1 1 2 | 9

2 4 3 | 1

3 6 5 | 0

 
 −
 
 − 

 ~ 
1 0 0 | 1

0 1 0 | 2

0 0 1 | 3

 
 
 
  

. 

The simpler augmented matrix that results from the elimination procedure is known as 

a reduced echelon matrix.  A reduced echelon matrix is a matrix that is said to be in 

a reduced row echelon form.  An echelon is a “steplike” pattern that moves down 

and to the right through the matrix. 

Sometimes the variables 

1 2 3, ,x x x  can be replaced 

by the variables , ,x y z . 

This symbol ~ 

has the meaning 

of being row 

equivalent. 
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Definition: 

A rectangular matrix is in row echelon form if it has the following 

three properties: 

1. All nonzero rows are above any rows of all zeros. 

2. Each leading entry of a row is in a column to the right of the 

leading entry of the row above it. A leading entry of a row 

refers to the leftmost nonzero entry in a nonzero row. 

3. All entries in a column below a leading entry are zeros. 

 

If a matrix in echelon form satisfies the following additional 

conditions, then it is in reduced row echelon form: 

4. The leading entry in each nonzero row is 1. 

5. Each leading 1 is the only nonzero entry in its column. 

 

 

Theorem:  Each matrix is row equivalent to one and only one reduced 

row echelon form. 

 

 

Example 11: The following matrices are in row echelon form.  The leading entries (#) 

may have any nonzero value; the starred entries (*) may have any values including 

zero. 

  and   . 

 

Example 12: The following matrices are in reduced row echelon form because the 

leading entries are 1’s and there are 0’s below and above each leading 1. 

 

  and   























00000000

**100000

**010000

**001000

**000*10
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Self-Test: 

 

Which of these are in row echelon form and which are in reduced row 

echelon form? 


























 −

































−
00

00
,

00000

00000

31000

10210

,

100

010

001

,

1100

7010

4001

 

















−

































10000

01100

06210

,

000

010

011

,

5100

2610

7341

 

 

 

When row operations on a matrix produce an echelon form, further row operations to 

obtain the reduced row echelon form do not change the positions of the leading 

entries.  Since the reduced echelon form is unique, the leading entries are always in 

the same positions in any echelon form obtained from a given matrix. These leading 

entries correspond to leading 1’s in the reduced row echelon form. 

 

 

Definition: 

A pivot position in a matrix A is a location in A that corresponds to a 

leading 1 in the reduced row echelon form of A.  A pivot column is a 

column of A that contains a pivot position.  A pivot is a nonzero 

number in a pivot position that is used as needed to create zeros via 

row operations. 

 

 

Example 13: 

 

 

 

 

 

 

 

Pivot positions 

Pivot columns 
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6. NAÏVE GAUSS ELIMINATION (GAUSSIAN ELIMINATION WITH 

BACK- SUBSTITUTION) 

 

Naïve Gauss Elimination is an elimination procedure to change any given matrix into 

a row echelon form and performs back-substitution on the resultant linear 

combination of vector equation to solve for . 

 

Example 14: Apply Naïve Gauss Elimination to solve the following linear system. 

 

2 3

1 2 3

1 2 3

2 8 8

2 0

4 5 9 9

x x

x x x

x x x

− =

− + =

− + + = −

 

 

Step 1: Create an augmented matrix for the linear system. 

 

0 2 8 | 8

1 2 1 | 0

4 5 9 | 9

− 
 

−
 
 − − 

 

 

Step 2: Begin with the leftmost nonzero column.  This is a pivot column 1.  The pivot 

position is at the top (row 1). 

0 2 8 | 8

1 2 1 | 0

4 5 9 | 9

− 
 

−
 
 − − 

 

 

 

Step 3: Select a nonzero entry in the pivot column as a pivot.  If necessary, 

interchange rows to move this entry into the pivot position. 

 

At the beginning the pivot is at row 2 of the pivot column.  

After that row 1 and row 2 are interchanged so that the pivot 

moves to the first topmost of the pivot column.   

 

 

 

0 2 8 | 8

1 2 1 | 0

4 5 9 | 9

− 
 

−
 
 − − 

 ~ 

1 2 1 | 0

0 2 8 | 8

4 5 9 | 9

− 
 

−
 
 − − 

 

 

Pivot column 

Pivot Pivot 
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Step 4: Use row replacement operations to create zeros in all positions below the 

pivot. 

 

Here, you want to keep  in the row 1 and eliminate it from 

row 3. 

 

 

1 2 1 | 0

0 2 8 | 8

4 5 9 | 9

− 
 

−
 
 − − 

 

 

To do so, this is what you do:   It is equivalent to: 

 

 

4 [row 1]

[row 3]

[new row 3]



+       

1 2 3

1 2 3

1 2 3

4 8 4 0

4 5 9 9

0 3 13 9

x x x

x x x

x x x

− + =

− + + = −

− + = −

 

 

 

The result of this calculation is written in place of the original row 3: 

 

1 2 1 | 0

0 2 8 | 8

0 3 13 | 9

− 
 

−
 
 − − 

 

 

Step 5: Apply steps 2-4 to the submatrix that remains.  Repeat the process until there 

are no more nonzero rows to modify. 

 

Here, you want to keep  and eliminate it from the row below it (row 3). 

 

 

 

1 2 1 | 0

0 2 8 | 8

0 3 13 | 9

− 
 

−
 
 − − 

 

 

 

 

 

 

 

Pivot 

Pivot column 

Pivot 
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To do so, this is what you do:  It is equivalent to: 

 

 

3
[row 2]

2

[row 3]

[new row 3]



+     

2 3

2 3

2 3

2 3

2 3

3 3 3
2 8 8

2 2 2

3 13 9

3 12 12

3 13 9

0 3

x x

x x

x x

x x

x x

     
− =     

     

− + = −

− =

− + = −

+ =

 

 

 

The result of this calculation is written in place of the original row 3: 

 

1 2 1 | 0

0 2 8 | 8

0 0 1 | 3

− 
 

−
 
  

 

 

The augmented matrix is now in a row echelon form.  The Naïve Gauss Elimination 

steps end here.  Proceed to Step 6. 

 

 

 

Step 6: Apply linear combination to the vector equation.  Notice that the new system 

has a triangular form. 

1 2 3

2 3

3

2 0

2 8 8

3

x x x

x x

x

− + =

− =

=

 

 

Step 7: Apply back-substitution for solution. 

Since , substitute  into equation of row 2 to get . 

Once you have got , substitute both  and  into equation of row 1 to get 

. 

 

3

2 2

1 1

3

2 8(3) 8 16

2(16) (3) 0 29

x

x x

x x

=

− =  =

− + =  =
 

 

 

 

 

This system has one 

unique solution, since 

there is only one 

values for each x. 
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7. GAUSS-JORDAN ELIMINATION 

 

Gauss-Jordan Elimination is an elimination procedure to change any given matrix into 

a reduced row echelon form.  The resultant linear combination of vector equation 

directly gives out the solution of . 

 

Example 15: Apply Gauss-Jordan Elimination to solve the following linear system. 

 

2 3 4 5

1 2 3 4 5

1 2 3 4 5

3 6 6 4 5

3 7 8 5 8 9

3 9 12 9 6 15

x x x x

x x x x x

x x x x x

− + + = −

− + − + =

− + − + =

 

 

Step 1: Create an augmented matrix for the linear system. 

0 3 6 6 4 | 5

3 7 8 5 8 |  9

3 9 12 9 6 | 15

− − 
 

− −
 
 − − 

 

 

Step 2: Begin with the leftmost nonzero column.  This is a pivot column.  The pivot 

position is at the top. 

0 3 6 6 4 | 5

3 7 8 5 8 |  9

3 9 12 9 6 | 15

− − 
 

− −
 
 − − 

 

 

 

 

Step 3: Select a nonzero entry in the pivot column as a pivot.  If necessary, 

interchange rows to move this entry into the pivot position. 

 

 

 

0 3 6 6 4 | 5

3 7 8 5 8 |  9

3 9 12 9 6 | 15

− − 
 

− −
 
 − − 

  ~  

3 9 12 9 6 | 15

3 7 8 5 8 |  9

0 3 6 6 4 | 5

− − 
 

− −
 
 − − − 

 

 

 

 

 

 

 

 

Pivot column 

Pivot 

Here rows 1 

and 3 have 

been 

interchanged. 

Or you could 

interchange 

rows 1 and 2. 

Pivot 
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Step 4: Use row replacement operations to create zeros in all positions below the 

pivot. 

 

 

 

3 9 12 9 6 | 15

3 7 8 5 8 |  9

0 3 6 6 4 | 5

− − 
 

− −
 
 − − − 

  ~ 

3 9 12 9 6 | 15

0 2 4 4 2 |  6

0 3 6 6 4 | 5

− − 
 

− −
 
 − − − 

   

1 [row 1]

[row 2]

[new row 2]

− 

+  

   

 

 

Step 5: Apply steps 2-4 to the submatrix that remains.  Repeat the process until there 

are no more nonzero rows to modify. 

 

 

 

3 9 12 9 6 | 15

0 2 4 4 2 |  6

0 3 6 6 4 | 5

− − 
 

− −
 
 − − − 

  ~  

3 9 12 9 6 | 15

0 2 4 4 2 |  6

0 0 0 0 1 | 4

− − 
 

− −
 
  

 

3
[row 2]

2

[row 3]

[new row 3]

− 

+         

 

 

 

Step 6: Beginning with the rightmost pivot and working upward and to the left, create 

zeros above each pivot.  If a pivot is not 1, make it 1 by a division (scaling) operation. 

 

3 9 12 9 6 | 15

0 2 4 4 2 |  6

0 0 0 0 1 | 4

− − 
 

− −
 
  

 ~

3 9 12 9 0 | 9

0 2 4 4 0 |  14

0 0 0 0 1 | 4

− − − 
 

− −
 
  

   

6 [row 3]

[row 1]

[new row 1]

2 [row 3]

[row 2]

[new row 2]

− 

+

− 

+

             

 

 

 

 

 

 

 

Pivot 

Pivot 

Pivot 

Pivot 

Pivot Pivot 
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Step 7:  Repeat Step 6 for the next rightmost pivot until the matrix reaches a reduced 

row echelon form. 

 

3 9 12 9 0 | 9

0 2 4 4 0 |  14

0 0 0 0 1 | 4

− − − 
 

− −
 
  

 ~  

3 9 12 9 0 | 9

0 1 2 2 0 |  7

0 0 0 0 1 | 4

− − − 
 

− −
 
  

 

1
[row 2]

2

[new row 2]


 

 

 

 

3 9 12 9 0 | 9

0 1 2 2 0 |  7

0 0 0 0 1 | 4

− − − 
 

− −
 
  

  ~  

3 0 6 9 0 | 72

0 1 2 2 0 |  7

0 0 0 0 1 | 4

− − 
 

− −
 
  

 

9 [row 2]

[row 1]

[new row 1]



+   

 

 

 

 

3 0 6 9 0 | 72

0 1 2 2 0 |  7

0 0 0 0 1 | 4

− − 
 

− −
 
  

  ~  

1 0 2 3 0 | 24

0 1 2 2 0 |  7

0 0 0 0 1 | 4

− − 
 

− −
 
  

 

1
[row 1]

3

[new row 1]


  

 

 

The augmented matrix is now in a reduced row echelon form.  The Gauss-Jordan 

Elimination steps end here.  Proceed to Step 8. 

 

 

 

Step 9: Apply linear combination to the vector equation.   

 

1 3 4

2 3 4

3 5

2 3 24

2 2 7

4

x x x

x x x

x x

− + = −

− + = −

+ =
 

 

 

Step 10: Obtain the solution. 

1 3 4

2 3 4

5 3

24 2 3

7 2 2

4

x x x

x x x

x x

= − + −

= − + −

= −

 

 and  are called free variables. 

Pivot Pivot 

Pivot Pivot 
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Free variables indicate that the solution is not unique.  Each different 

choice of  and  determines a different solution of the system.  

Thus, the system has infinitely many solutions. 

 

 

Do you know? 

 

This linear system is known as an underdetermined system, where 

there are more variables than there are equations.  An overdetermined 

system is the vice versa, where there are more equations than 

variables. 

 

 

Do you know? 

 

The elimination steps to get a row echelon form (as in Naïve Gauss 

Elimination) are known as the forward phase.  The proceeding steps 

from there to get a reduced row echelon form (as in Gauss-Jordan 

Elimination) are known as the backward phase.  In general, the 

forward phase of row reduction takes much longer than the backward 

phase. 

 

 

 

8. SOLVING A SYSTEM OF LINEAR EQUATIONS BY MATRIX 

INVERSION 

 

Theorem: 

 

If A is an invertible n x n matrix, then for each b in , the equation 

 has the unique solution  

 

By this theorem, a system of linear equations can be solved via the inverse of the 

coefficient matrix A.  An n x n matrix is said to be invertible if there is an n x n 

matrix C such that 

  and  

where , the n x n identity matrix.  In this case, C is an inverse of A.  This unique 

inverse is denoted by , so that 

 and  
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Theorem: 

Let .  If , then A is invertible and 

                                  
If , then A is not invertible. 

 

The quantity  is called the determinant of A.  It is denoted as . 

 

Example 16: Use the matrix inversion technique to solve the following linear system. 

1 2

1 2

3 4 3

5 6 7

x x

x x

+ =

+ =
 

 

Step 1: Construct the coefficient matrix A. 

 

 
 

 

 

Step 2: Find the inverse of A. 

 

Here, , so 

 

 
 

 
Step 3: Multiply  to b to get x. 

Given that ,   

3 2 3(3) 2(7)
3 5

5 3 5 3
7 3(3) (7)

2 2 2 2

− − +   
      = = =       −+   

   

x  
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Solving a linear system by matrix inversion is seldom used since numerically the 

elimination method is nearly always faster.  An exception is the 2 x 2 case as in this 

example.  For a general  matrix, the following theorem states that  can be 

found by the row reduction technique. 

 

 

Theorem: 

An  matrix A is invertible if and only if A is row equivalent to , 

and in this case, any sequence of elementary row operations that 

reduces A to  also transforms  into . 

 

 

If A and I are placed side-by-side to form an augmented matrix , then row 

operations on this matrix produce identical operations on A and on I.  If A is row 

equivalent to I, then  is row equivalent to .  Otherwise, A has no 

inverse.   

 

 

Example 17: Find the inverse of the matrix below, if it exists: 

 

 
 

Step 1: Construct augmented matrix . 

 

0 1 2 | 1 0 0

1 0 3 | 0 1 0

4 3 8 | 0 0 1

 
 
 
 −   

 

Step 2: Apply row reduction technique till the matrix A is in a reduced row echelon 

form. 
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0 1 2 | 1 0 0 1 0 3 | 0 1 0

1 0 3 | 0 1 0   ~   0 1 2 | 1 0 0

4 3 8 | 0 0 1 4 3 8 | 0 0 1

1 0 3 | 0 1 0 1 0 3 | 0 1 0

~   0 1 2 | 1 0 0   ~   0 1 2 | 1 0 0

0 3 4 | 0 4 1 0 0 2 | 3 4 1

9 3
1 0 0 | 7

1 0 3 | 0 1 0 2 2

~   0 1 2 | 1 0 0   ~   

3 1
0 0 1 | 2

2 2

   
   
   
   − −   

   
   
   
   − − − −   

 
− − 

 
 
 

− 
 

0 1 0 | 2 4 1

3 1
0 0 1 | 2

2 2

 
 
 

− − 
 

− 
 

 

 

 

 

 

 

 

 

Sometimes a matrix with no inverse is known as a singular matrix. You might 

occasionally encounter a “nearly singular” or ill-conditioned matrix.  This type of 

matrix is an invertible matrix but it can become singular if some of its entries are 

changed over so slightly.  In this case, row reduction may produce fewer than n pivot 

positions, as a result of roundoff error.  Also, roundoff error can sometimes make a 

singular matrix appear to be invertible.   

 

For a  (square) matrix, a condition number can be computed.  The condition 

number of a  matrix A is 

 
where  indicates the matrix norm on A and . 

 

When solving linear system of , the condition number indicates the accuracy 

of x.  The larger the condition number, the closer the matrix is to being singular.  The 

Do you know? 

In practice, is seldom computed, unless 

the entries of  are needed.  Computing 

both  and  takes about three times as 

many arithmetic operations as solving 

 by row reduction. 
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condition number of the identity matrix is 1.  A singular matrix has an infinite 

condition number. 

 

9. LU FACTORIZATION 

 

A factorization of a matrix A is an equation that expresses A as a product of two or 

more matrices.  It aims to solve a sequence of equations, all with the same coefficient 

matrix.  The LU factorization is described below: 

 
When A is invertible, one could compute  and then compute , and so 

on.  However, it is more efficient to solve  by row reduction and obtained an 

LU factorization of A at the same time.  Thereafter, the remaining equations are 

solved with the LU factorization. 

 

At first, assume that A is an m x n matrix that can be row reduced to echelon form, 

without row interchanges.  Then A can be written in the form of , where L is 

an m x m lower triangular matrix with 1’s on the diagonal and U is an m x n echelon 

form of A.  Such factorization is called an LU factorization of A.  The matrix L is 

invertible and is called a unit triangular matrix. 

 

1 0 0 0 # * * * *

* 1 0 0 0 # * * *

* * 1 0 0 0 0 # *

* * * 1 0 0 0 0 0

A

   
   
   =
   
   
   

 

 

Such factorization is useful since whenever , the equation  can be 

written as .  Writing y for , x can be found by solving the pair of 

equations, 

      

 
First solve for  for y, and then solve  for x.  Each equation is easy to 

solve because L and U are triangular. 

 

 

 

 

 

 

 

L        U 

The leading entries (#) 

may have any nonzero 

value; the starred entries 

(*) may have any values 

including zero. 
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Do you know? 

 

Whereas matrix multiplication involves a synthesis of data (combining the 

effect of two or more matrices into a single matrix), matrix factorization is an 

analysis of data.  In the language of computer science, the expression of A as a 

product amounts to preprocessing of the data in A, organizing that data into two or 

more parts whose structures are more useful in some way, perhaps more accessible 

to computation. 

 

Example 18: Find an LU factorization of, 

 

 
 

Step 1: Construct matrix L.   

Since A has four rows, L should be 4 x 4.  The first column of L is the first column of 

A divided by the top pivot entry. 

 

   

 
Compare the first columns of A and L.  The row operations that create zeros in the 

first column of A will also create zeros in the first column of L.  You want this same 

correspondence of row operations to hold for the rest of L. 

 

 

 

 

 

 

 

 

 

 

 

 

Pivot 

1
[pivot entry 1]

2

[new column 1]


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 Step 2: Perform a row reduction of A to an echelon form U. 

 

                             

2 4 1 5 2 2 4 1 5 2

4 5 3 8 1 0 3 1 2 3
  ~  

2 5 4 1 8 0 9 3 4 10

6 0 7 3 1 0 12 4 12 5

2 4 1 5 2 2 4 1 5 2

0 3 1 2 3 0 3 1 2 3
~     ~  

0 0 0 2 1 0 0 0 2 1

0 0 0 4 7 0 0 0 0 5

A

− − − −   
   
− − − −
   =
   − − − − −
   
− − −   

− − − −   
   

− −
   
   
   
   

 

 

2 4 1 5 2

0 3 1 2 3

0 0 0 2 1

0 0 0 0 5

U

− − 
 

−
 =
 
 
 

 

 

Step 3: Complete matrix L.  At each pivot column, divide the entries by the pivot of 

that column and place the result into L. 

 

From the first pivot column  

 

From the second pivot column  

 

From the third pivot column     

 

From the fourth pivot column   

 

 

 

Self-Test:  

Verify the results of  and  by performing the matrix multiplication 

of  and check that it should be equal to matrix .   
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For solving a linear system, once the matrices  and  have been found, proceed to 

solving the pair of equations, 

               

Example 19: Solve the linear system, given that the LU factorization matrix is as 

below: 

1 2 3 4

1 2 3

1 2 4

1 2 3 4

3 7 2 2 9

3 5 5

6 4 5 7

9 5 5 12 11

x x x x

x x x

x x x

x x x x

− − + = −

− + + =

− − =

− + − + =

 

 
 

Step 1: Solve  by using forward substitution to get y. 

 

1

2

3

4

1 0 0 0 9

1 1 0 0 5
  

2 5 1 0 7

3 8 3 1 11

−    
    

−
    =
    −
    

−      

y

y

y

y

  ~     

1

2

3

4

9

4

5

1

−   
   

−
   = =
   
   
    

y

y
y

y

y

 

 

 

Step 2:  Solve  by using back substitution row to get x. 

1

2

3

4

3 7 2 2 9

0 2 1 2 4
  

0 0 1 1 5

0 0 0 1 1

− − −    
    

− − −
    =
    −
    

−      

x

x

x

x

  ~       

 

 
 

10. SOLVING LINEAR SYSTEM BY ITERATIVE METHODS 

 

Gaussian Elimination is a finite sequence of  floating point operations that 

result in a solution.  For that reason, Gaussian Elimination is called a direct method 

for solving systems of linear equations.  Direct methods, in theory, give the exact 

solution within a finite number of steps.  So-called iterative methods also can be 
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applied to solving systems of linear equations.  The methods begin with an initial 

guess and refine the guess at each step, converging to the solution vector.   

 

Direct methods based on Gaussian Elimination provide the user a finite number of 

steps that terminate in the solution.  What is the reason for pursuing iterative methods, 

which are only approximate and may require several steps for convergence? 

 

There are two major reasons for using iterative methods.  Both reasons stem from the 

fact that one step of an iterative method requires only a fraction of the floating point 

operations of a full LU factorization.  A single step of Jacobi’s Method, for example, 

requires about  multiplications and about the same number of additions.  The 

question is how many steps will be needed for convergence within the user’s 

tolerance. 

 

One particular circumstance that argues for an iterative technique is when a good 

approximation to the solution is already known.  For example, suppose that a solution 

to  is known, after which A and/or b change by a small amount.  If the 

solution to the previous problem is used as a starting guess for the new, but similar, 

problem, fast convergence can be expected. 

 

Such technique is known as polishing, because the method begins with an 

approximate solution, which could be the solution from a previous, related problem, 

and the merely refines the approximate solution to make it more accurate.  Polishing 

is common in real-time applications where the same problem needs to be re-solved 

repeatedly with data that is updated as time passes.  If the system is large and time is 

short, it may be impossible to run an entire Gaussian Elimination or even a back-

substitution in the allotted time.  If the solution has not changed too much, a few steps 

of a relatively cheap iterative method might keep sufficient accuracy as the solution 

moves through time. 

 

The second major reason to use iterative methods is to solve sparse systems of 

equations.  A coefficient matrix is called sparse if many of the matrix entries are 

known to be zero.  A full matrix is the opposite, where few entries may be assumed to 

be zero. 

 

The iterative-method produces a sequence of approximate solution vectors  x(1), 

x(2)….for the linear system Ax=b. The iterative method starts with selecting the 

nonsingular matrix Q and having a starting vector x(0), then generate vectors x(1), 

x(2)….recursively from the equation 

 

Q x(n+1)=( Q-A) x(n)+b    where n=0,1,2,3,4…… 
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11. JACOBI METHOD 

 

The Jacobi Method is a form of fixed-point iteration for a system of linear 

equations Ax=b.  In Jacobi iteration, Q is taken to be the diagonal of A. We write the 

equation of Jacobi method as 

 

x(n+1)=Bx(n)+h   

   

where B = I – Q -1A, h= Q -1b and n=0,1,2,3,4…… 

 

For example,  A=

3 1

1 2

 
 
  ,   b=

5

5

 
 
 

  

Q =

3 0

0 2

 
 
   , Q -1A =

1
0

3 13

1 21
0

2

 
   
   

  
  

=

1
1

3

1
1

2

 
 
 
 
  

 

B = I – Q -1A=

1
0

3

1
0

2

 
− 

 
 −
  

,  h= Q-1b=

5

3

5

2

 
 
 
 
  

 

 

In order to approximate the solution  x(1), x(2)….for the linear system Ax=b, we iterate 

the equation of the Jacobi method, starting with an initial guess(starting vector) x(0). 

The iterations are stopped when the absolute relative approximate error is less than a 

pre-specified tolerance. The formula for absolute relative approximate error is given 

as below: 
1

1 1
| | 100 0

n n

n x n

x x
where n

x

+

+ +

−
 =    

 

Example 22:  Apply the Jacobi Method to the system, 

2 5

3 5

u v

u v

+ =

+ =
 

with initial guess 
.
 

Step 1: Begin by constructing the first equation for u and the second equation for v.   

 

1

1

5 2

5 3

k k

k k

u v

v u

+

+

= −

= −  

Remember that the variables 

1 2,x x  can be replaced by the 

variables ,u v . 
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Step 3:  Use the initial guess  and iterate. 

First iteration: 

1 5 2(0) 5u = − =  

1 5 3(0) 5v = − =  

After the first iteration, the absolute relative approximate errors are 

1

5 0
100 100.00%

5u

−
 =  =  

                   1

5 0
100 100.00%

5v

−
 =  =  

Repeating more iterations, the following values are obtained 

 

Iteration u  1 (%)n u+  v  1 (%)n v+  

0 0  0  

1 5 100 5 100 

2 -5 200 -10 150 

3 25 120 20 150 

 

As seen in the table above, the estimated solutions are not converging to the exact 

solution of which is  and . Why? This is because the coefficient matrix of 

the system of equations is not diagonally dominant. In other words, if a system of 

equations has coefficient matrix that is not diagonally dominant, it may not converge. 

 

Convergence Theorems for Iterative Methods 

 

A simple way to determine the convergence is to inspect the diagonal elements. 

All of the diagonal elements must be non-zero. Convergence is guaranteed if the 

system is diagonally dominant. 

 

 

 

Definition: 

The  matrix  is strictly diagonally dominant if, for 

each .  In other words, each main diagonal 

entry dominates its row in the sense that it is greater in magnitude than 

the sum of magnitudes of the remainder of the entries in its row. 
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Theorem 1: 

If the  matrix A is strictly diagonally dominant, then 

1. A is a non-singular matrix, and 

2. for every vector b and every starting guess, the Iterative 

Methods applied to  converges to the (unique) solution. 

 

 

 

Theorem 2: Spectral Radius Theorem 

In order that the equations generated  by Q x(n)=( Q-A) x(n-1)+b  to converge, 

no matter what initial guess x(0) is selected, it is necessary that all eigenvalues 

of B = (I – Q -1A) satisfy the condition ρ(I – Q -1A) < 1. Where ρ is the 

spectral radius of B and ρ=maximum of |eigenvalues λi of B|.  

 

 

 

Example 20: Matrix A is strictly diagonally dominant because  in row 1 and 

 in row 2; but matrix C is not. 

 

 
 

Convergence is guaranteed for matrix A when Jacobi Method is applied.   

 

 

Note that strict diagonally dominance is only a sufficient condition.  The Jacobi 

Method may still converge in its absence. 

 

Example 21: Determine whether the matrices are strictly diagonally dominant. 

 

 
Matrix A is diagonally dominant because  in row 1, 

 in row 2, and  in row 3. 

 

Matrix B is not, because, for example,  is not true.  However, matrix B 

can be made diagonally dominant if the first and third rows are exchanged to become, 
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Now, row 1 of B is , row 2 is , and row 3 is 

. 

 

 

Example 22:  Apply the Jacobi Method to the system, 

3 5

2 5

u v

u v

+ =

+ =
 

 

with initial guess 
.
 

Step 1: Construct the coefficient matrix and check if it is diagonally dominant.  If 

necessary, exchange rows to fulfil this condition. 

 
 

Step 2: Begin by solving the first equation for u and the second equation for v.   

 

 
 

Step 3:  Use the initial guess  and iterate. 

First iteration: 

1

5 (0)
1.6667

3
u

−
= =  

1

5 (0)
2.5

2
v

−
= =  

After the first iteration, the absolute relative approximate errors are 

1

1.6667 0
100 100.00%

1.6667u

−
 =  =  

                   1

2.5 0
100 100.00%

2.5v

−
 =  =   

 

 

The maximum absolute relative approximate error after the first iteration is 100%. Is 

the solution diverging? Repeating more iterations, the following values are obtained 
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Iteration u  1 (%)n u+  v  1 (%)n v+  

0 0  0  

1 1.6667 100 2.5 100 

2 0.8333 100 1.6667 50 

3 1.1111 25 2.0833 20 

4 0.9722 14.2857 1.9444 7.1429 

5 1.0185 4.5455 2.0139 3.4483 

6 0.9954 2.3256 1.9907 1.1628 

7 1.0031 0.7692 2.0023 0.5780 

 

From the table above, further steps of Jacobi show convergence toward the solution, 

which is  and . In this example, the convergence is guaranteed as the 

system is diagonally dominant. 

 

 

Do you know? 

Jacobi Method obeys linear convergence. What is a linear 

convergence? 

 

Definition: 

Let  denote the error at step i of an iterative method.  If 

 
the method is said to obey linear convergence with rate S. 

 

12. GAUSS-SEIDEL METHOD 

 

Closely related to the Jacobi Method is an iteration called Gauss-Seidel Method.  

The only difference between Gauss-Seidel and Jacobi is that in the former, the most 

recently updated values of the unknowns are used at each step, even if the updating 

occurs in the current step. Therefore, in Gauss-Seidel iteration, Q is taken as a lower 

triangular part of A, including the diagonal. We write the Gauss-Seidel method as 

 

x(n+1)=Bx(n)+h   

   

where B = I – Q -1A, h= Q -1b and n=0,1,2,3,4…… 

 

For example,  A=

3 1

1 2

 
 
  ,   b=

5

5

 
 
 
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Q =

3 0

1 2

 
 
    

 

Gauss-Seidel often converges faster than Jacobi if the method is convergent.  Like 

Jacobi, Gauss-Seidel Method converges to the solution as long as the coefficient 

matrix is strictly diagonally dominant. The Spectral Radius Theorem is also 

applicable to the Gauss-Seidel method to prove that Gauss-Seidel method converges 

for all the initial guesses 

 

Example 23: Apply the Gauss-Seidel Method to the system 

12 3 5 1u  v - w  + =  

5 3 28u  v  w  + + =  

3 7 13 76u  v  w + + =  

 

 

With an initial guess of 

 

1

0

1

u

v

w

   
   =
   
      

 

Step 1: Check if the coefficient matrix is strictly diagonally dominant.  If necessary, 

exchange rows to fulfil this condition. 

|12 | 3 5 8 + − =  

| 5 | 1 3 4 + =  

|13 | 3 7 10 + =  

 

 

Step 2: Construct the equations for and . 

Solve equation of row 1 for u.   

Equation of row 1, 

1

1 3 5

12

k k
k

v w
u +

− +
=  

Solve equation of row 2 for v. 

Equation of row 2, 

1
1

28 3

5

k k
k

u w
v +

+

− −
=  
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Solve equation of row 3 for w. 

Equation of row 3, 

1 1
1

76 3 7

13

k k
k

u v
w + +

+

− −
=  

 

Step 3:  Use the initial guess  and iterate the constructed equations. 

1

0

1

u

v

w

   
   =
   
      

 

 

              
( ) ( )

1

1 3 0 5 1
0.50000

12
u

− +
= =  

( ) ( )
1

28 0.5 3 1
4.9000

5
v

− −
= =  

( ) ( )
1

76 3 0.50000 7 4.9000
3.0923

13
w

− −
= =  

After the first iteration, the absolute relative approximate errors are 

1

0.50000 1.0000
100 100.00%

0.50000u

−
 =  =  

1

4.9000 0
100 100.00%

4.9000v

−
 =  =  

1

3.0923 1.0000
100 67.662%

3.0923w

−
 =  =  

The maximum percentage relative error after the first iteration is 100%. Is the 

solution diverging? No, as you conduct more iterations, the solution converges 

as follows. This is because the system is strictly diagonally dominant, and 

therefore the iteration will converge to the exact solution 

1

3

4

u

v

w

   
   =
   
      
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Iteration u 1 (%)n u+  v 1 (%)n v+  w 1 (%)n w+  

0 

1 
2 
3 
4 
5 
6 

1 

0.50000 
0.14679 
0.74275 
0.94675 
0.99177 
0.99919 

 

100.00 
240.61 
80.236 
21.546 
4.5391 
0.74307 

0 

4.9000 
3.7153 
3.1644 
3.0281 
3.0034 
3.0001 

 

100.00 
31.889 
17.408 
4.4996 
0.82499 
0.10856 

1 

3.0923 
3.8118 
3.9708 
3.9971 
4.0001 
4.0001 

 

67.662 
18.876 
4.0042 
0.65772 
0.074383 
0.00101 

 

 

Note the difference between Gauss-Seidel and Jacobi:   

 

The definition of  uses the expression of  not .  Similarly, 

the definition of  uses the expression of both  and . 

 

 

13. INTRODUCTION TO LINEAR TRANSFORMATIONS 

 

The difference between a matrix equation  and the associated vector equation 

 is merely a matter of notation.  However, a matrix 

equation  can arise in applications such as computer graphics and image 

processing in a way that is not directly connected with linear combinations of vectors.  

This happens when the matrix A becomes an object that “acts” on a vector x by 

multiplication to produce a new vector called Ax.  In such a case, it can be said that a 

multiplication by A transforms x into b. 

 

 
From this point of view, solving the equation  amounts to finding all vectors x 

in  that are transformed into the vector b in  under the “action” of multiplication 

x     b 

multiplication 

by A 

  

 

 

 

 

 

The system is strictly diagonally dominant, and therefore 

the iteration will converge to the solution , that 

is . 
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by A.  A transformation (or function or mapping) T from  to  is a rule that 

assigns to each vector x in  a vector T(x) in . 

The correspondence from x to Ax is a function from one set of vectors to another.  

The set  is called the domain of T, and the set is called the codomain of T.  The 

notation : n mT R R→  indicates that the domain of T is  and the codomain in .  

For x in , the vector T(x) in  is called the image of x (under the action of T).  

The set of all images T(x) is called the range of T.  Observe that the domain of T is 

when A has n columns and the codomain of T is when each column of A has m entries.  

For simplicity, sometimes matrix transformation is denoted by Ax x . 

 

Every matrix transformation is a linear transformation.  Linear transformation 

preserves the operations of vector addition and scalar multiplication. 

 

Definition: 

 

A transformation (or mapping) T is linear if: 

1.  for all u, v in the domain of 

T; 

2.  for all u and all scalars of c. 

 

 

Theorem: 

 

Let : n mT R R→  be a linear transformation.  Then there exists a 

unique matrix A such that 

 

 for all x in  

 

In fact, A is the m x n matrix whose jth column is the vector , 

where  is the jth column of the identity matrix in : 

 

 
Matrix A is called the standard matrix for the linear transformation T. 
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14. EIGENVECTORS AND EIGENVALUES: LINEAR SYSTEM OF . 

 

The topic on eigenvectors {pronounce as ˈīgənˌvektər (ei-gen-vec-tor)} dissects the 

action of a linear transformation Ax x  into elements that are easily visualized.  

Although such transformation may move vectors in a variety of directions, it often 

happens that there are special vectors on which the action of A is quite simple.  

Eigenvectors are vectors that are transformed by A into a scalar multiple of 

themselves.  Such system amounts to solving a linear system of . 

 

Definition: 

An eigenvector of an n x n matrix A is a nonzero vector x such that 

 for some scalar .  A scalar  is called an eigenvalue of A is 

there is a nontrivial solution x of ; such an x is called an 

eigenvector corresponding to . 

 

Intuitively, to solve the linear system of  , one can performed, 

 

Since A is usually a square n x n matrix and  is a scalar, to solve the equation 

requires ingenuity where  is multiplied to an identity matrix  as, 

 
This matrix equation is a type of a homogeneous linear system, which always has a 

trivial solution of .  It involves two unknowns,  and x. 

 

By the definition above, an eigenvector x must be nonzero, but an eigenvalue may be 

zero.  Then  is not the solution of the linear system.  The solution is the 

nontrivial one, where, it must be that ( λ )A I− = 0 , where this relates to matrix 

inversion and determinant.   

 

Recall that if a matrix A is not invertible, its det A = 0.  The equation ( λ )A I− = 0 ,  

can be solved by finding the non invertible matrix I) using det I) = 0.   

Such scalar equation det  is known as the characteristic equation of the 

linear system. 

 

The set of all solutions of the linear system  is just the null space of the 

matrix .  So this set is a subspace of  and is called the eigenspace of A 



TRIMESTER 2                    CMA6134 COMPUTATIONAL METHODS             CHAPTER 5 

Page | 36  KCY/NOORSHAHIDA/THL 

corresponding to .  The eigenspace consists of the zero vector and all the 

eigenvectors corresponding to . 

 

Side Notes: What is an eigenspace? 

An eigenspace is a subspace (subset) of a vector space.  A vector 

space V is a nonempty set of objects, called vectors, on which two 

operations are defined, called addition and multiplication by scalars 

(real numbers), subject to 10 axioms (rules) listed below.  The axioms 

must hold for all vectors u, v, and w in V and for all scalars c and d. 

1. The sum of u and v, denoted by u + v, is in V. 

2. u + v = v + u. 

3. (u + v) + w = u + (v + w). 

4. There is a zero vector 0 in V such that u + 0 = u. 

5. For each u in V, there is a vector –u in V such that u + (–u) = 0. 

6. The scalar multiple of u by c, denoted by cu, is in V. 

7. c(u + v) = cu + cv. 

8. (c + d)u = cu + du. 

9. c(du) = (cd)u. 

10. 1u = u. 

 

A subspace of  is any set H in  that has these three properties: 

1. The zero vector is in set H. 

2. For each u and v in H, the sum u + v is in H. 

3. For each u in H and each scalar c, the vector cu is in H. 

 

The null space of a matrix A, is the set of all solutions to the 

homogeneous equation . The null space is a subspace and 

denoted as Nul A. 

 

Because an eigenspace (a subspace) typically contains an infinite number of vectors, 

some problems involving a subspace are handled best by working with a small finite 

set of vectors that span the subspace; the smaller the set, the better.  Such small finite 

set of vectors is known as a basis (plural form is bases).  It would be useful then to 

express the solution of the linear system  by its bases. 

 

Definition: 

A basis for a subspace H of  is a linearly independent set in H that spans H. 
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Example 24: Find the eigenvalues of A. 

 

Find all the scalars  such that the matrix equation,  has a nontrivial 

solution. 

 

det  det  

Recall that  

det  

                  

                  
The eigenvalues of A are 3 and -7. 

 

 

Example 25: Find the eigenvalues and its corresponding eigenvectors, and bases for 

matrix A. 

 
 

Step 1: Construct the characteristic equation and find the eigenvalues. 

 

 

 

 
 

Step 2: Compute the eigenvector for . 

 

 

 

 

Self-Test: Is 7 an eigenvalue of ? 
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Step 3: Compute the eigenvector for . 

 

 

 

 
 

Step 4: Construct the bases. 

Basis for  is  and basis for  is . 

 

 

Do you know? 

In many cases, the eigenvalues-eigenvector information contained 

within a matrix A can be displayed in a useful factorization of the form 

.  The factorization enables the computation of  quickly 

for large values of k that can be used in performing linear 

transformation.  The D in the factorization stands for diagonal.   

 

Unfortunately, not all matrices can be factored as .  

However, a factorization  is possible for any m x n matrix 

A.  This special factorization is called the singular value 

decomposition. 

 

 

 

 

Example 26: Find the eigenvalues and determine whether the Jacobi and Gauss-Seidel 

methods of the Example 22 converge for all the initial guesses. 

 

3 5

2 5

u v

u v

+ =

+ =  

A=

3 1

1 2

 
 
  ,   b=

5

5

 
 
 
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For Jacobi method:
 

Q =

3 0

0 2

 
 
   , Q -1A =

1
0

3 13

1 21
0

2

 
   
   

  
  

=

1
1

3

1
1

2

 
 
 
 
  

 

 

B = I – Q -1A=

1
0

3

1
0

2

 
− 

 
 −
  

 , 

1 1
0

03 3

01 1
0

2 2

B I









   
− −    

− = − =    
    − − −

      

 

 

2

1

13
det( ) det

1 6

2

B I



 



 
− − 

− = = − 
 − −
  

 

 

1

6
 =  , spectral radius ρ= 

1

6
 < 1. Thus, by the Spectral Radius Theorem, the 

Jacobi method succeeds for any starting initial vector in this example.
  

 

For Gauss-Seidel method:
 

Q =

3 0

1 2

 
 
   , Q -1A =

1
0

3 13

1 1 1 2

6 2

 
   
   

  −
  

=

1
1

3

5
0

6

 
 
 
 
  

 

 

B = I – Q -1A=

1
0

3

1
0

6

 
− 

 
 
  

 , 

1 1
0

03 3

1 0 1
0 0

6 6

B I









   
− − −    

− = − =    
    −

      

 

 

2

1

13
det( ) det

1 6
0

6

B I



  



 
− − 

− = = − 
 −
  

 

1
0,

6
 = , spectral radius ρ= 

1

6
 < 1. Thus, by the Spectral Radius Theorem, the Gauss-

Seidel method succeeds for any starting initial vector in this example.
 


