TRIMESTER 2 CMAG6134 COMPUTATIONAL METHODS CHAPTER 5

CHAPTER 5 MATRICES AND SYSTEMS OF LINEAR
EQUATIONS

In this Chapter, you will learn:

e what is a system of linear equations,

o the differences between a vector and a matrix,

e the different types of solution for linear systems,

e how to solve a system of linear equations of the form Ax = b,
¢ how to solve a system of linear equations of the form Ax = Ax.

1. INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS
A linear equation in the variables x, ..., x, is an equation that can be written in the
form of

fy%y T A%, + o+ a,x, =b

where b and a,...,a, (known as the coefficients) are real or complex numbers,

usually being defined in advance. The subscripts n may be any positive integer.

Example 1: Is this equation linear? Self-Test:
4x, —5x, + 2= x, v, =2(V6—x,)+

It is linear because it can be arranged algebraically as 3x, —5x, = -2

Is this equation linear?

Example 2: Is this equation linear?

dxy —5x, = xy%,

This equation is not linear because of the presence of the term =, x .

Self-Test:

1, =2./x,—6

Is this equation linear? If it is not, state the reason?
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A system of linear equations (or a linear system) is a collection of one or more linear
equations involving the same variables of x, ... x

nt
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This system of linear equations consists of n number of variables

) i Notice the changes in
and m number of linear equations.

the subscripts of the
coefficients and x?

2. MATRICES AND VECTORS

The essential information of a system of linear equations can be recorded compactly
in a rectangular array called a matrix. The plural form of a matrix is known as
matrices.

Example 3:

—dxy +5x, + 9x5, = —9

with the coefficients of each variable aligned in columns, the coefficient matrix is,

1 =2 1 The second linear
[ 0 1 —8] equation is written as
—4 5 9 Ox; +2x, —8x; =8

and the augmented matrix of the system is,

1 -2 1 | ©
0 1 -8 | 8
—4 5 g | —9

The size of the matrix tells how many rows and columns it has. This matrix has 3
linear equations (given by the number of rows) and 3 variables (given by the number
of columns).

A matrix with only one column is called a column vector. Similarly a matrix with
one row is called a row vector. Both are simply known as a vector.
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Notice that a vector is written in bold
Example 4. and non-italic. Vectors can also be
u= [_31] v=1[5 7 9] written as 1 and v or i and .

Vector u is a row vector in B and vector v is a column vector in R*. The superscript

of R indicates the size of the space that the vector is in.

A vector in R? has 2 entries and are said to be ordered pairs of real numbers. A vector
in R* has 3 entries. Thus, a vector in R™ has n entries. Two vectors are said to be
equal if their corresponding entries are the same. Thus, a vector in R* can never be

equal to a vector in R,

Self-Test:

Givenu = [i] and v = [i] Are these vectors equal?

The sum of two vectors, u + v can be obtained by adding the respective corresponding
entries of the two vectors, u and v. A scalar multiple of vector u by c is when a vector

u and a real number c¢ is multiplied together becoming cu. .
c is also known as a scalar.

Example 5:
Givenu = [

fu = [—48]’ (=2)v= [_84]

1 2 .
2] and v = [_4], find 4u, (—2)v,and 4u + (—2)v.

nasu o= 4] [F]- [0

A vector whose entries are all zero is called a zero vector and is usually denoted by 0.

A system of linear equations can be written as a vector equation involving a linear
combination of vectors.
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Example 6:
Xy —2x,+x3 =0
X, —B8xy, =28

—4x, +5x, +9x,=—9

This system of linear equations is equivalent to:

R RERY

Side Notes: What is Linear Combinations?

vector y defined by

¥V= 0Vy 76V, T T 0,V

C1eCq 4y Cppe

Given vectors v, v, ..., v, in B™ and given scalars ¢,, ¢, ,...,c,, the

is called a linear combination of w,, v, ..,v, with weights

3. THE MATRIX EQUATION Ax=Db

Using the fundamental idea of vectors and matrices, a system of linear equations can

be rephrase to become a matrix equation in the form of Ax = b.

/Definition:

If Ais an m X n matrix, with columns a., ..., a,,, and if x is in B*, then
the product of A and x denoted by Ax = b, is the linear combination of

the columns of A using the corresponding entries in X as weights; that

nTn

~

/
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Example 7:
Xy —2x,+x3 =0
X, —B8xy, =28

—4x, +5x, +9x,=—9

IS equivalent to these vector equations:

NS HMEEH

and is equivalent to
Q
“[s)
-9

1 =2 17[*%1
0 1 —8]|*
—4 g 9 X

in that it becomes a matrix equation of the form 4x = b.

Self-Test:
So by now you should know that a system of linear equations can be written in three
compact ways. Try writing all three on the following linear system:

¥y + 2%, —x; =4

—5x,+3x; =1

4. SOLUTION SETS OF LINEAR SYSTEMS

A system of linear equations (or linear system) has either:

— —
A

One Solution No Solution Infinitely Many

/

v

v

Solutions
A solution of the system of linear equations is a list (s,,5,, ..., s, ) of numbers that

makes each equation a true statement when the values =,, s, ..., s,, are substituted into
1y, ..., x,, respectively.  The set of all possible solutions is called the solution set of

the linear system.
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Finding the solution set of a system with two linear equations in two variables is
equivalent to finding the intersection of two lines. Equivalently, finding the solution
set of a system with three linear equations in three variables is similar to finding the
intersection between two planes in a 3D space.

Example 8: What is the solution for this system of linear equations?
3
2xy—x, T -xy; =8
<2

xy—dx, = =7

s, = 5,5, = 6.5,and s; = 3 are the solutions because when these Self-Test:

values are substituted into x,,x, x5 , respectively where

v, =5,,%, =5, and x; = 55, the equations simplify to 8 =3

Try to substitute the values

into the linear system.

and -7 = —7.

A system of linear equations is said to be homogeneous if it can be written in the
form of 4x = 0, where A is an m x n matrix and 0 is the zero vector in R™.

Example 9: The following is a homogeneous linear system:
3xy+5x,—4x; =10

—3xy —2x,+4x; =10

bxy +x, —8x; =10
A linear system of Ax = 0 always has at least one solution, namely x = 0 (the zero
vector in B™). When such system Ax = 0 has x = 0 as its only solution, the vectors
{ay,..,a,} are said to be linearly independent. This solution of x = 0 is known as a

trivial solution.

When there exist other nonzero vectors x that satisfies 4x = 0. Those solutions are

known as the nontrivial solution of the homogeneous linear system. The vectors
{a,...,a,} are said to be linearly dependent.
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/Definition:

independent if the vector equation

Xqa; T xa, ++x,a, =0

has only the trivial solution, where x = 0.

Otherwise, the set of vectors {a,,..,a,} is said to be linearly

vependent if there exist x, ..., x,,, not all zero.

An indexed set of vectors {a,,..,a,} in B™ is said to be linearly

/

A nonhomogeneous linear system is a linear system of Ax = b. This linear system

has many solutions. The solution set of Ax = b is the set of all vectors of the form

w=p-+v,, Where p is a particular solution and w, is any solution of the

homogeneous equation Ax = 0. This relation is true for all consistent equation of

Ax = b. Ifalinear system has no solution, then it is said to be inconsistent.

ﬁheorem:
If A'is an m x n matrix, with columns ay, ..., a,, and if b is in B™, the

matrix equation
Ax=bh

has the same solution set as the vector equation

x,a, +x,a,+--+x,a, =b

which, in turn, has the same solution set as the system of linear
equations whose augmented matrix is
31 @ .. a, [ b]

~

/
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5. ELIMINATION PROCESS: ROW REDUCTION, ECHELON FORMS,
PIVOTING

The elimination procedure is a systematic procedure for solving linear systems. The
basic strategy is to replace one system with an equivalent system that is easier to
solve.

Three basic operations are used to simplify a linear system:
1. Replace one equation by the sum of itself and a multiple of another equation.
2. Interchange two equations.
3. Multiply all the terms in an equation by a nonzero constant.

Given a matrix, the basic idea is to perform those three basic operations on the rows
of a matrix. Two matrices are said to be row equivalent if there is a sequence of
elementary row operations that transforms one matrix into the other. If the augmented
matrices of two linear systems are row equivalent, then the two systems have the same
solution set.

Example 10:
X+y+2z2=9 Sometimes the variables
2x+4y-3z=1 ¥, Xy, %3 Can be replaced
3x+6y-5z=0 by the variables x,y,z.

This linear system can be rewritten as an augmented matrix,

11 2 |9
2 4 3|1
36 510

and by means of the three basic row operations, it is row equivalent to,

1001
0101 2
00 1] 3
This can be written as This symbol ~
has the meanin
11 2 9] [to00]1 > e meaning
~ . of being row
24311 01072 equivalent.
36 510 0 01 ] 3

The simpler augmented matrix that results from the elimination procedure is known as
a reduced echelon matrix. A reduced echelon matrix is a matrix that is said to be in
a reduced row echelon form. An echelon is a “steplike” pattern that moves down

and to the right through the matrix.
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Definition:
A rectangular matrix is in row echelon form if it has the following
three properties:
1. All nonzero rows are above any rows of all zeros.
2. Each leading entry of a row is in a column to the right of the
leading entry of the row above it. A leading entry of a row
refers to the leftmost nonzero entry in a nonzero row.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional

conditions, then it is in reduced row echelon form:

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

Theorem: Each matrix is row equivalent to one and only one reduced
row echelon form.

Example 11: The following matrices are in row echelon form. The leading entries (#)
may have any nonzero value; the starred entries (*) may have any values including
zero.

- 0O # = = == = ® ¥ ¥ *
1;:‘.-‘“ GGG#H!M!‘\‘\
'D:-‘; and{)‘}gﬂ#'ﬂ.h:\'\:\
o 0 0
PO 00000 # = = = =

0 00 00 000 & =

Example 12: The following matrices are in reduced row echelon form because the
leading entries are 1’s and there are 0’s below and above each leading 1.

01 *00°0 **
Lo = = 0001060 ™**
o0 1 = = * *
0 0 0 and |0 0 0 0 1 0O
0 0 0 O 0 00O0O01=*~*
10 00 00O O0 O]
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Self-Test:

Which of these are in row echelon form and which are in reduced row
echelon form?

01 -201
100 4 1 00

00 0 1 3 0 0
0107|010 ,

00 0 OO 0 0
0 01 -1 0 01

00 0 0O

When row operations on a matrix produce an echelon form, further row operations to
obtain the reduced row echelon form do not change the positions of the leading
entries. Since the reduced echelon form is unique, the leading entries are always in
the same positions in any echelon form obtained from a given matrix. These leading
entries correspond to leading 1’s in the reduced row echelon form.

-

Definition:

A pivot position in a matrix A is a location in A that corresponds to a
leading 1 in the reduced row echelon form of A. A pivot column is a
column of A that contains a pivot position. A pivot is a nonzero
number in a pivot position that is used as needed to create zeros via

krow operations.

~

Example 13:

Pivot positions
—.3<J—6 4 |9
-1 3 |1

-2 =3 0 -1
1 4 5 -5 7

t+ ¢t

Pivot columns
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6. NAIVE GAUSS ELIMINATION (GAUSSIAN ELIMINATION WITH
BACK- SUBSTITUTION)

Naive Gauss Elimination is an elimination procedure to change any given matrix into

a row echelon form and performs back-substitution on the resultant linear
combination of vector equation to solve for =x.

Example 14: Apply Naive Gauss Elimination to solve the following linear system.
2X, —8X, =8
X, —2%X, + %, =0
—4X, +5X, +9%; =-9

Step 1: Create an augmented matrix for the linear system.

4 5 9 | -9

Step 2: Begin with the leftmost nonzero column. This is a pivot column 1. The pivot
position is at the top (row 1).

4 5 9 | -9

t

Pivot column

Step 3: Select a nonzero entry in the pivot column as a pivot. If necessary,
interchange rows to move this entry into the pivot position.

At the beginning the pivot is at row 2 of the pivot column.
After that row 1 and row 2 are interchanged so that the pivot
moves to the first topmost of the pivot column.

Pivot Pivot
v
0|2 -8 8 1 -2 1 | O
l«-2 1 | 0(~|0 2 -8 | 8
-4 5 9 | -9 -4 5 9 | -9
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Step 4: Use row replacement operations to create zeros in all positions below the
pivot.

Here, you want to keep x, in the row 1 and eliminate it from

row 3.
Pivot
i
1 -2 1 | 0
o 2 -8 8
-4 5 9 | -9
To do so, this is what you do: It is equivalent to:
4x[row 1] 4% —8X, +4x, =0
+[row 3] —4x, +5X, +9%, =-9
[new row 3] 0x, —3x, +13x, =-9

The result of this calculation is written in place of the original row 3:

1 -2 1] 0
02 8| 8
0 -3 13 | -9

Step 5: Apply steps 2-4 to the submatrix that remains. Repeat the process until there
are no more nonzero rows to modify.

Here, you want to keep x, and eliminate it from the row below it (row 3).

1—J1|0
0 248 8

0 -3 13 | -9

t

Pivot column
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To do so, this is what you do:

It is equivalent to:

Y2

5 xlrow?2] -3x, +13x, =-9
+[row 3] 3x, —12x, =12
[new row 3] —-3x, +13%, =-9
0x, +% =3

The result of this calculation is written in place of the original row 3:

1 2110
0 2 -8 | 8
00 1 |3

The augmented matrix is now in a row echelon form. The
steps end here. Proceed to Step 6.

Naive Gauss Elimination

Step 6: Apply linear combination to the vector equation. Notice that the new system

has a triangular form.
X, —2%, + %, =0
2X, —8X%, =8
X; =3

Step 7: Apply back-substitution for solution.

Since x5 = 3, substitute x; into equation of row 2 to get x,.

Once you have got x, = 16, substitute both x, and x into equation of row 1 to get

Xy

X; =3
2X, —8(3)=8=x, =16
X —2(16)+ (@) =0=x =29

This system has one
unique solution, since
there is only one
values for each x.
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7. GAUSS-JORDAN ELIMINATION

Gauss-Jordan Elimination is an elimination procedure to change any given matrix into
a reduced row echelon form. The resultant linear combination of vector equation
directly gives out the solution of x.

Example 15: Apply Gauss-Jordan Elimination to solve the following linear system.

3X, —6X; +6X, +4x, =-5
3%, —7X, +8%X; —5X, +8X, =9
3%, — 9%, +12X, —9X, +6X, =15

Step 1: Create an augmented matrix for the linear system.
0 3 6 6 4 ]-5
3 -7 8 5819
3 9 12 -9 6 |15

Step 2: Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.

0 3 6 6 4|-5
3 -7 8 58109
3 -9 12 9 6 |15

Pivot column

Step 3: Select a nonzero entry in the pivot column as a pivot. If necessary,
interchange rows to move this entry into the pivot position.

Here rows 1
Pivot Pivot and 3 have

r r been

0 3 6 6 4]-5 3 9 12 -9 6 |15 interchanged.
3 -7 8 581]9|~1|3 -7 8 58129 Or you could
3 912 -9 6 |15 0 3 6 6 4 |

-5 interchange
rows 1 and 2.
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Step 4: Use row replacement operation

pivot.
r Pivot r Pivot
3 9 12 -9 6 |15 3 9 12 -9 6 |15 —1x[row 1]
3 -7 8 58 |9|~10 2 -4 4 2 |-6 +row 2]
0 3 6 -6 4 |-5 0 3 6 6 4 |-5 [new row 2]

s to create zeros in all positions below the

Step 5: Apply steps 2-4 to the submatrix that remains. Repeat the process until there

are no more nonzero rows to modify.

Pivot
3 9112 -9 6 |15 3
0 2«4 4 2 |-6]~10
0 3 6 6 4 |-5 0

Step 6: Beginning with the rightmost piv

Pivot
3
9|12 -9 6 | 15]| w2l
2«4 4 2 | -6 +[row 3]
0 0 0 1| 4]||fewrow3]

ot and working upward and to the left, create

zeros above each pivot. If a pivot is not 1, make it 1 by a division (scaling) operation.

- : —6x[row 3]

_| Pivot _| Pivot Hrow 1]

3 9 12 9 6 |15] [3 -9 12 -9 0 | -9 [new row 1]
0 2 4 4 2]|-6(~0 2 -4 4 0| -14

0 0 0 0 1+ 4| |0 0 0 0 1| 4 —2x[row 3]

+row 2]

[new row 2]
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Step 7: Repeat Step 6 for the next rightmost pivot until the matrix reaches a reduced

row echelon form.

1
—x[row 2
—x[row 2]

[new row 2]

9x[row 2]
+row 1]

[new row 1]

3 912 9 0| -9 3 9 12 9 0 |-9
0 244 4 0 |-14|~|0 142 2 0 |-7
0 0 0 1| 4 0 0/0 0 1] 4
Pivot Pivot
3 912 9 01]-9] [30-690]-72
0 1¢-2 2 0 | -7|~|0 1«2 2 0 | 7
0 0O 0 1 | 4 0O 00 01| 4
Pivot | Pivot
ﬁ |
30690 |-72] [1L0-230|-24
01 2201 -7|~|01-220]-7
000 01/ 4 00 0 01/ 4

1
—x[row 1
3 [ ]

[new row 1]

The augmented matrix is now in a reduced row echelon form. The Gauss-Jordan

Elimination steps end here. Proceed to Step 8.

Step 9: Apply linear combination to the vector equation.

X, — 2%, +3X, =24
X, —2%X; +2X, =—1
X, + X, =4

Step 10: Obtain the solution.
X, = =24+ 2%, —3X,
X, =—=1+42X; —2X,
X, =4-X,
x5 and x, are called free variables.

KCY/NOORSHAHIDA/THL
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Free variables indicate that the solution is not unique. Each different
choice of x; and x, determines a different solution of the system.

Thus, the system has infinitely many solutions.

Do you know?

This linear system is known as an underdetermined system, where
there are more variables than there are equations. An overdetermined
system is the vice versa, where there are more equations than
variables.

Do you know?

The elimination steps to get a row echelon form (as in Naive Gauss
Elimination) are known as the forward phase. The proceeding steps
from there to get a reduced row echelon form (as in Gauss-Jordan
Elimination) are known as the backward phase. In general, the
forward phase of row reduction takes much longer than the backward
phase.

8. SOLVING A SYSTEM OF LINEAR EQUATIONS BY MATRIX
INVERSION

Theorem:

If A is an invertible n x n matrix, then for each b in #*, the equation

Ax = b has the unique solution x = A7 'b.

By this theorem, a system of linear equations can be solved via the inverse of the
coefficient matrix A. An n x n matrix is said to be invertible if there is an n x n
matrix C such that

CA=1 and AC =1

where I = I_, the n x n identity matrix. In this case, C is an inverse of A. This unique
inverse is denoted by 472, so that

Al4a =1 and A4 1=1
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/ Theorem:

Klf ad — be = 0, then A is not invertible.

Letd = ['z j] If add — be = 0, then A is invertible and
_ 1 ad —hb
-'I' =
A ad — be [—c a ]

~

/

The quantity ad — ke is called the determinant of A. It is denoted as det 4.

Example 16: Use the matrix inversion technique to solve the following linear system.

3%, +4%, =3
SX +6X%, =7

Step 1: Construct the coefficient matrix A.

N

Step 2: Find the inverse of A.

Here,a =3,b=4,c=5,d = 6,50

1 1 [6 —4]
3(6)—4(5)L-5 3
—3 2

=z ]
2 2

Step 3: Multiply A~* to b to get x.

Giventhatb = E,]

-3 2y [3@+2D] ¢
PR P
> SIS m| -3
o A
ol sl s -3

KCY/NOORSHAHIDA/THL
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Solving a linear system by matrix inversion is seldom used since numerically the
elimination method is nearly always faster. An exception is the 2 x 2 case as in this
example. For a general n x n matrix, the following theorem states that A~* can be

found by the row reduction technique.

-

N

Theorem:
An n x nmatrix A is invertible if and only if A is row equivalentto I, ,

and in this case, any sequence of elementary row operations that
reduces A to I, also transforms I, into 471

~

/

If A and | are placed side-by-side to form an augmented matrix [4 | [I], then row
operations on this matrix produce identical operations on A and on I. If A is row
equivalentto I, then [A | I]isrowequivalentto[I | A~']. Otherwise, A hasno

inverse.

Example 17: Find the inverse of the matrix below, if it exists:

Step

o 1 2
A=|1 0 3

4 -3 8

1: Construct augmented matrix [4 | I].
01 21100
1 0 3]010
4 -3 8 001

Step 2: Apply row reduction technique till the matrix A is in a reduced row echelon

form.
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1 21100 1 0 3] 010
10 3] 010 ~1]01 2]100
-3 8] 001 4 381001
1 0 3 |0 1 O] 1 0 3 | 1 0
~101 2 |10 ~ 101 2|10
0 -3 4]0 -4 1] 0 0 2 | -4 1
_ _ _ 9 37
103]0 1 0 1oo] - 7 -3
~/012 2] 1 0 0l ~|01O0]| -2 4 -1
0 0 1 | 3 -2 1 0 0 1 | 3 -2 1
L 2 2] L 2 2
[ 9 . 3] Do you know?
2 2 In practice, A~tis seldom computed, unless
At=|-2 4 -1
7 1 the entries of A1 are needed. Computing
2 o 2
2 2

- - both 471 and 4~ *b takes about three times as

many arithmetic operations as solving

Ax = b by row reduction.

Sometimes a matrix with no inverse is known as a singular matrix. You might
occasionally encounter a “nearly singular” or ill-conditioned matrix. This type of
matrix is an invertible matrix but it can become singular if some of its entries are
changed over so slightly. In this case, row reduction may produce fewer than n pivot
positions, as a result of roundoff error. Also, roundoff error can sometimes make a
singular matrix appear to be invertible.

For an x n (square) matrix, a condition number can be computed. The condition
number of an x n matrix A is

cond A= ||A|l||A7Y|

where || || indicates the matrix norm on A and 4.

When solving linear system of Ax = b, the condition number indicates the accuracy

of x. The larger the condition number, the closer the matrix is to being singular. The
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condition number of the identity matrix is 1. A singular matrix has an infinite
condition number.

9. LUFACTORIZATION

A factorization of a matrix A is an equation that expresses A as a product of two or

more matrices. It aims to solve a sequence of equations, all with the same coefficient

matrix. The LU factorization is described below:
Ax=b,, Ax=b,, .. Ax=Db

When A is invertible, one could compute 4™ and then compute A™*b,, 47*b,, and so
on. However, it is more efficient to solve A™'b, by row reduction and obtained an

LU factorization of A at the same time. Thereafter, the remaining equations are
solved with the LU factorization.

At first, assume that A is an m x n matrix that can be row reduced to echelon form,
without row interchanges. Then A can be written in the form of 4 = LU, where L is

an m x m lower triangular matrix with 1’s on the diagonal and U is an m x n echelon
form of A. Such factorization is called an LU factorization of A. The matrix L is
invertible and is called a unit triangular matrix.

0 Oll# > > > =* The leading entries (#)
* 10 ollo # = may have any nonzero
A=, 1 ollo o o value; the starred entries
(*) may have any values
* * *
1jo 00 including zero.
L U

Such factorization is useful since whenever 4 = LU, the equation 4x = b can be
written as L{Ux) = b. Writing y for Ux, x can be found by solving the pair of

equations,
Lv=hb

Ux =y
First solve for Ly = b for y, and then solve Ux = y for x. Each equation is easy to

solve because L and U are triangular.
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Do you know?

Whereas matrix multiplication involves a synthesis of data (combining the
effect of two or more matrices into a single matrix), matrix factorization is an
analysis of data. In the language of computer science, the expression of A as a
product amounts to preprocessing of the data in A, organizing that data into two or
more parts whose structures are more useful in some way, perhaps more accessible
to computation.

Example 18: Find an LU factorization of,

2 4 -1 5 =2
-4 -5 3 -5 1
2 -5 -4 1 =

Step 1: Construct matrix L.
Since A has four rows, L should be 4 x 4. The first column of L is the first column of
A divided by the top pivot entry.

v | Pivot

1 000 l>< [pivot entry 1]
-2 1 0 0 2

= 10 [new column 1]
-3 1

Compare the first columns of A and L. The row operations that create zeros in the
first column of A will also create zeros in the first column of L. You want this same
correspondence of row operations to hold for the rest of L.
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Step 2: Perform a row reduction of A to an echelon form U.

v
2 4 -1 5 -2 2 4 -1 5 -2
A |4 53 81| |08 1 2 3
2 5 4 1 8 0 -9 -3 -4 10
6 0 7 -3 1 012 4 12 -5
f
2 4 15 -2 2 4 .15 -2
03 1 2 -3 03 1 2 -3
" oo o0 2 1| |oo o0 21
00 0 4 7 00 00 5
T A
2 4 .15 -2
y_|08 1 23
000 2 1
00 00 5

Step 3: Complete matrix L. At each pivot column, divide the entries by the pivot of
that column and place the result into L.

2
—4

From the first pivot column + 2 1

2
—6 1 0
3
—2‘9_’3_‘ 3 4
1

*

From the third pivot column E] + 2

Lol o B o N

From the second pivot column

From the fourth pivot column [5] =5

Self-Test:
Verify the results of L and U7 by performing the matrix multiplication

of LU and check that it should be equal to matrix A.
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For solving a linear system, once the matrices L and I/ have been found, proceed to

solving the pair of equations,
Ly=hb Ux =y

Example 19: Solve the linear system, given that the LU factorization matrix is as
below:
3X, = TX, — 2%, +2X, =9
—3% +5X, + %X, =5
6x, —4x,—5%, =7
—9x, +5X%, —5x, +12x, =11

10 0 0y -7 -2 2

-1 1 0 0ojj0 -2 -1 2
LU =

2 =5 1 0ofo 0 -1 1

-3 & 3 1)10 0 0 -1

Step 1: Solve Ly = b by using forward substitution to get y.

1 0 00 Y, -9 Y, -9

-1 1 00 -4
Y, _ - o oy= Y, _

2 510 A A

-3 8 3 1 ||y, 11 Y, 1

3 -7 -2 2 X -9 x 3
0 -2 -1 2 X, -4 Xy
— ~ = X = =
0 0 -1 1 Xy 5 X —f
0 0 0 -1 (|x, 1 X, -1
nxy=3x, =4x,=—-6,x,=-1

10. SOLVING LINEAR SYSTEM BY ITERATIVE METHODS

Gaussian Elimination is a finite sequence of o(n*) floating point operations that

result in a solution. For that reason, Gaussian Elimination is called a direct method
for solving systems of linear equations. Direct methods, in theory, give the exact
solution within a finite number of steps. So-called iterative methods also can be

KCY/NOORSHAHIDA/THL Page | 24



TRIMESTER 2 CMAG6134 COMPUTATIONAL METHODS CHAPTER 5

applied to solving systems of linear equations. The methods begin with an initial
guess and refine the guess at each step, converging to the solution vector.

Direct methods based on Gaussian Elimination provide the user a finite number of
steps that terminate in the solution. What is the reason for pursuing iterative methods,
which are only approximate and may require several steps for convergence?

There are two major reasons for using iterative methods. Both reasons stem from the
fact that one step of an iterative method requires only a fraction of the floating point
operations of a full LU factorization. A single step of Jacobi’s Method, for example,
requires about n* multiplications and about the same number of additions. The

question is how many steps will be needed for convergence within the user’s
tolerance.

One particular circumstance that argues for an iterative technique is when a good
approximation to the solution is already known. For example, suppose that a solution
to Ax = b is known, after which A and/or b change by a small amount. If the

solution to the previous problem is used as a starting guess for the new, but similar,
problem, fast convergence can be expected.

Such technique is known as polishing, because the method begins with an
approximate solution, which could be the solution from a previous, related problem,
and the merely refines the approximate solution to make it more accurate. Polishing
IS common in real-time applications where the same problem needs to be re-solved
repeatedly with data that is updated as time passes. If the system is large and time is
short, it may be impossible to run an entire Gaussian Elimination or even a back-
substitution in the allotted time. If the solution has not changed too much, a few steps
of a relatively cheap iterative method might keep sufficient accuracy as the solution
moves through time.

The second major reason to use iterative methods is to solve sparse systems of
equations. A coefficient matrix is called sparse if many of the matrix entries are
known to be zero. A full matrix is the opposite, where few entries may be assumed to
be zero.

The iterative-method produces a sequence of approximate solution vectors x®,
x@. .. for the linear system Ax=b. The iterative method starts with selecting the
nonsingular matrix Q and having a starting vector x©, then generate vectors x\,
x@_ . recursively from the equation

Q xMV=(Q-A) xMW+b where n=0,1,2,3,4......

KCY/NOORSHAHIDA/THL Page | 25



TRIMESTER 2 CMAG6134 COMPUTATIONAL METHODS CHAPTER 5

11. JACOBI METHOD
The Jacobi Method is a form of fixed-point iteration for a system of linear

equations Ax=b. In Jacobi iteration, Q is taken to be the diagonal of A. We write the
equation of Jacobi method as

X D=BxM+h

where B=1-Q A, h=0Q *band n=0,1,2,3,4......

31 5
For example, A=|1 2|, b=|5

1
3 0 3 %3 1 1%
Q=|0 2|, Q"A= 11 2|=
0 = 1
2 El
5
0o -1 3
B=1-QAs| 3| h=0M=| 5
=0 P
> 2

In order to approximate the solution x®, x®@_ .. for the linear system Ax=b, we iterate
the equation of the Jacobi method, starting with an initial guess(starting vector) x©.
The iterations are stopped when the absolute relative approximate error is less than a
pre-specified tolerance. The formula for absolute relative approximate error is given
as below:

n+l n

X

le n—:lx x100 where n>0
X

n+1|>< -

Example 22: Apply the Jacobi Method to the system,
u+2v=>5

Remember that the variables
3u+v=>5 X{, X, can be replaced by the

variables u,v.

with initial guess [u,,v,] = [0.0]

Step 1: Begin by constructing the first equation for u and the second equation for v.

Uy = 95— 2V,
Viey =9 =3,
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Step 3: Use the initial guess [u,,v,] = [0,0] and iterate.

First iteration:

u =5-2(0)=5
v, =5-3(0)=5
After the first iteration, the absolute relative approximate errors are
e)|. = ‘5;0 %100 = 100.00%
e, =P - 91,100 = 100.00%

Repeating more iterations, the following values are obtained

Iteration u |€n+1 |u (%) v |en+1 |v (%)
0 0 0
1 5 100 5 100
2 -5 200 -10 150
3 25 120 20 150

As seen in the table above, the estimated solutions are not converging to the exact
solution of which is = = 1 and + = 2. Why? This is because the coefficient matrix of

the system of equations is not diagonally dominant. In other words, if a system of
equations has coefficient matrix that is not diagonally dominant, it may not converge.

Convergence Theorems for lterative Methods

A simple way to determine the convergence is to inspect the diagonal elements.
All of the diagonal elements must be non-zero. Convergence is guaranteed if the

system is diagonally dominant.

Definition:

The n x nmatrix A = (a,,) is strictly diagonally dominant if, for
each1 =i = n,la;| = X, la;|. Inother words, each main diagonal

entry dominates its row in the sense that it is greater in magnitude than

the sum of magnitudes of the remainder of the entries in its row.

~
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/ Theorem 1: \

If the n x wn matrix A is strictly diagonally dominant, then

1. Alsanon-singular matrix, and
2. for every vector b and every starting guess, the Iterative
Methods applied to Ax = b converges to the (unique) solution.

/
4 )
Theorem 2: Spectral Radius Theorem
In order that the equations generated by Q x™=( Q-A) x"V+b to converge,
no matter what initial guess x© is selected, it is necessary that all eigenvalues
of B = (I — Q A) satisfy the condition p(I — Q A) < 1. Where p is the
spectral radius of B and p=maximum of |eigenvalues A; of B|.

- /

Example 20: Matrix A is strictly diagonally dominant because |3| = |1] in row 1 and

|2] = |1| in row 2; but matrix C is not.

a=fp o) =l ]

Convergence is guaranteed for matrix A when Jacobi Method is applied.

Note that strict diagonally dominance is only a sufficient condition. The Jacobi
Method may still converge in its absence.

Example 21: Determine whether the matrices are strictly diagonally dominant.

3 1 -1 3 2 G
A=|2 -5 2 E=|[1 8 1
1 & a3 9 2 =2
Matrix A is diagonally dominant because |3|=|1|+|—1] in row 1,

|—5| = [2| + [2| intow 2, and |8] = |1| + |&] in row 3.

Matrix B is not, because, for example, |3| = |2| + |&] is not true. However, matrix B

can be made diagonally dominant if the first and third rows are exchanged to become,
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=11 8 1

3 2 &6

‘3‘2—2]

Now, row 1 of B is |9 = |2| + | —2], row 2 is |&] = [1] + |1], and row 3 is

6] = 3]+ [2].

Example 22: Apply the Jacobi Method to the system,
3u+v=>5

Uu+2v=>5
with initial guess [u,.v,] = [0.0]

Step 1: Construct the coefficient matrix and check if it is diagonally dominant. If
necessary, exchange rows to fulfil this condition.

: 2]
1 2
Step 2: Begin by solving the first equation for u and the second equation for v.
5—v 5—wv,
u = = Uyp.q =
3 3
S—u 5 —uy
v = 5 Vypey = >

Step 3: Use the initial guess [u,,v,] = [0,0] and iterate.
First iteration:
u = 5_—3(0) =1.6667

vl:S_T(O)zz.S

After the first iteration, the absolute relative approximate errors are

&, =[+2057=01, 100 =100.00%
+~| 16667
e, = ‘%‘ %100 =100.00%

The maximum absolute relative approximate error after the first iteration is 100%. Is
the solution diverging? Repeating more iterations, the following values are obtained
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Iteration u |€n+1|u (%) v |en+1 |v (%)

0 0 0

1 1.6667 100 2.5 100

2 0.8333 100 1.6667 50

3 1.1111 25 2.0833 20

4 0.9722 14.2857 1.9444 7.1429

5 1.0185 4.5455 2.0139 3.4483

6 0.9954 2.3256 1.9907 1.1628

7 1.0031 0.7692 2.0023 0.5780

From the table above, further steps of Jacobi show convergence toward the solution,
which is «w = 1 and + = 2. In this example, the convergence is guaranteed as the

system is diagonally dominant.

Do you know?
Jacobi Method obeys linear convergence. What is a linear

convergence?

Definition:
Let e, denote the error at step i of an iterative method. 1f
e.+1
lim — =51

= 2.

the method is said to obey linear convergence with rate S.

12. GAUSS-SEIDEL METHOD

Closely related to the Jacobi Method is an iteration called Gauss-Seidel Method.
The only difference between Gauss-Seidel and Jacobi is that in the former, the most
recently updated values of the unknowns are used at each step, even if the updating
occurs in the current step. Therefore, in Gauss-Seidel iteration, Q is taken as a lower
triangular part of A, including the diagonal. We write the Gauss-Seidel method as

X D=BxM+h

whereB=1-Q A h=Q *band n=0,1,2,3,4......

31 5
For example, A=|1 2|, b=|5
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Gauss-Seidel often converges faster than Jacobi if the method is convergent. Like
Jacobi, Gauss-Seidel Method converges to the solution as long as the coefficient
matrix is strictly diagonally dominant. The Spectral Radius Theorem is also
applicable to the Gauss-Seidel method to prove that Gauss-Seidel method converges
for all the initial guesses

Example 23: Apply the Gauss-Seidel Method to the system
12u+3v-5w=1
u+5v+3w=28

3u+7v+13w=76

With an initial guess of

u 1
v{=|0
w 1

Step 1: Check if the coefficient matrix is strictly diagonally dominant. If necessary,
exchange rows to fulfil this condition.

|12 |> \3\+\—5\=8
15> [1+|3 =4
|13]>[3|+[7| =10

Step 2: Construct the equations for 1w, v, and w.

Solve equation of row 1 for u.
Equation of row 1,
1-3v, +5w,
Wpn=——"7
12
Solve equation of row 2 for v.
Equation of row 2,
- 28— Uy ,; —3W,

Vk +1 5
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Solve equation of row 3 for w.
Equation of row 3,
_ 76— 3uk+1 — 7Vk+l
k+l — 13

Step 3: Use the initial guess and iterate the constructed equations.

u 1
vi=|0
w 1

1-3(0)+5(1)
12
28—(0.5)—3(1)

u, = = 0.50000

v, = = 4.9000

76— 3(0.50000) — 7(4.9000)
- 13

After the first iteration, the absolute relative approximate errors are
0.50000—1.0000|

=3.0923

1

|€l|u :‘

x100 =100.00%
0.50000 |
e, = 49000=01, 159 — 100.00%
| 4.9000
el :‘3.0923—1.0000|X 100 = 67.662%

3.0923
The maximum percentage relative error after the first iteration is 100%. Is the
solution diverging? No, as you conduct more iterations, the solution converges
as follows. This is because the system is strictly diagonally dominant, and
therefore the iteration will converge to the exact solution

u 1
vi=|3
w il
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lteration u €naly (%) v €nal, (%) w €l (%0)
0 1 0 1
1 0.50000 100.00 4.9000 100.00 3.0923 67.662
2 0.14679 240.61 3.7153 31.889 3.8118 18.876
3 0.74275 80.236 3.1644 17.408 3.9708 4.0042
4 0.94675 21.546 3.0281 4.4996 39971 | 0.65772
5 0.99177 45391 3.0034 0.82499 | 4.0001 | 0.074383
6 0.99919 0.74307 3.0001 0.10856 | 4.0001 | 0.00101

Note the difference between Gauss-Seidel and Jacobi:

The definition of v,., uses the expression of u, ., notwu,. Similarly,

the definition of w, ., uses the expression of both u, ., and v, ..

13. INTRODUCTION TO LINEAR TRANSFORMATIONS

The difference between a matrix equation 4x = b and the associated vector equation
xja; + x,a,+--+x,a, = bis merely a matter of notation. However, a matrix
equation Ax = b can arise in applications such as computer graphics and image

processing in a way that is not directly connected with linear combinations of vectors.
This happens when the matrix A becomes an object that “acts” on a vector X by
multiplication to produce a new vector called Ax. In such a case, it can be said that a
multiplication by A transforms x into b.

/’ multiplication \1
X / by A b

From this point of view, solving the equation Ax = b amounts to finding all vectors x

in R™ that are transformed into the vector b in R™ under the “action” of multiplication
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by A. A transformation (or function or mapping) T from £* to R™ is a rule that
assigns to each vector x in R™ a vector T(X) in R™.

The correspondence from x to Ax is a function from one set of vectors to another.
The set R™ is called the domain of T, and the set #™is called the codomain of T. The

notation T : R" — R™ indicates that the domain of T is #™ and the codomain in B™.
For x in ™, the vector T(x) in R™ is called the image of x (under the action of T).

The set of all images T(x) is called the range of T. Observe that the domain of T is
when A has n columns and the codomain of T is when each column of A has m entries.
For simplicity, sometimes matrix transformation is denoted by X+ AX.

Every matrix transformation is a linear transformation. Linear transformation
preserves the operations of vector addition and scalar multiplication.

/Definition: \

A transformation (or mapping) T is linear if:
1. T({u+v)=T(u)+ T(v)forall u, v in the domain of
T
k 2. T(eu) = cT(u) forall u and all scalars of c. /

ﬁeorem: \

Let T:R" —>R™ be a linear transformation. Then there exists a
unique matrix A such that

T(x) = Ax forall x in B

In fact, A is the m x n matrix whose jth column is the vector T(e,),

where e; is the jth column of the identity matrix in R™:

A=[T(e) .. T(e,)]
Matrix A is called the standard matrix for the linear transformation T./
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14. EIGENVECTORS AND EIGENVALUES: LINEAR SYSTEM OF Ax = /X,

The topic on eigenvectors {pronounce as 'igon vektor (ei-gen-vec-tor)} dissects the
action of a linear transformation X+ AX into elements that are easily visualized.
Although such transformation may move vectors in a variety of directions, it often
happens that there are special vectors on which the action of A is quite simple.
Eigenvectors are vectors that are transformed by A into a scalar multiple of
themselves. Such system amounts to solving a linear system of Ax = 7.x.

Gefinition: \

An eigenvector of an n x n matrix A is a nonzero vector x such that
Ax = j.x for some scalar . A scalar A is called an eigenvalue of A is

there is a nontrivial solution x of 4x = #x; such an X is called an

Cigenvector corresponding to A.

/

Intuitively, to solve the linear system of x = 7.x, one can performed,
Ax—ix=10

Since A is usually a square n x n matrix and A is a scalar, to solve the equation
requires ingenuity where A is multiplied to an identity matrix I, as,

Ax—1Ix=0 = (A—-ix=0

This matrix equation is a type of a homogeneous linear system, which always has a
trivial solution of x = 0. It involves two unknowns, A and x.

By the definition above, an eigenvector x must be nonzero, but an eigenvalue may be
zero. Then x = 0 is not the solution of the linear system. The solution is the

nontrivial one, where, it must be that (A—Al)=0, where this relates to matrix
inversion and determinant.

Recall that if a matrix A is not invertible, its det A = 0. The equation (A—Al)=0,
can be solved by finding the non invertible matrix (4 — 71) using det(4 — 2.1) = 0.

Such scalar equation det(4 — 7.1} = @ is known as the characteristic equation of the

linear system.

The set of all solutions of the linear system (4 — 7.0)x = @ is just the null space of the

matrix (4 — 2.I. So this set is a subspace of £™ and is called the eigenspace of A
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corresponding to A. The eigenspace consists of the zero vector and all the
eigenvectors corresponding to A.

Side Notes: What is an eigenspace?
An eigenspace is a subspace (subset) of a vector space. A vector
space V is a nonempty set of objects, called vectors, on which two
operations are defined, called addition and multiplication by scalars
(real numbers), subject to 10 axioms (rules) listed below. The axioms
must hold for all vectors u, v, and w in V and for all scalars ¢ and d.

1. Thesum of uand v, denoted by u + v, isin V.
u+v=v+u.
(U+v)+w=u+(v+w).
There is a zero vector 0 in V such thatu + 0 = u.
For each u in V, there is a vector —u in V such that u + (~u) = 0.
The scalar multiple of u by c, denoted by cu, isin V.
c(u+v)=cu+cv.
(c+d)u=cu+du.
c(du) = (cd)u.
lu=u.

©oN RN

[EEN
©

A subspace of £™ is any set H in R™ that has these three properties:

1. The zero vector is in set H.
2. ForeachuandvinH, thesumu+visinH.
3. Foreach uin H and each scalar c, the vector cu is in H.

The null space of a matrix A, is the set of all solutions to the
homogeneous equation 4x = 0. The null space is a subspace and

denoted as Nul A.

Because an eigenspace (a subspace) typically contains an infinite number of vectors,
some problems involving a subspace are handled best by working with a small finite
set of vectors that span the subspace; the smaller the set, the better. Such small finite
set of vectors is known as a basis (plural form is bases). It would be useful then to
express the solution of the linear system (A4 — #.0)x = 0 by its bases.

Definition:
A Dbasis for a subspace H of R™ is a linearly independent set in H that spans H.
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Example 24: Find the eigenvalues of A.

4= E —35]

Find all the scalars A such that the matrix equation, (4 — 7.7 )x = 0 has a nontrivial

solution. | |
il P B A B R
det (4 — i.1) = det [2 ; ’ _63_ ;r_] =0

Recall that det [ﬂ ﬂ] = ad — bc,
e d
det(A—2D=02-)(-6—-2)—-(3)(3) =—-124+6L—-21+27—9
—124+6L—-2h+3t—9=3"2+4;.-21=(h—-3)(L+t7)=0

=i, =3 l,=-7

?

The eigenvalues of A are 3 and -7. Self-Test: Is 7 an eigenvalue of 4 = [l 6]

5 2

Example 25: Find the eigenvalues and its corresponding eigenvectors, and bases for
matrix A.

Step 1: Construct the characteristic equation and find the eigenvalues.
. _[3 —21_[n 0]_[3—-% -2
A=l _[1 n:]] L] ;r_]_[ 1 —;r_]

det(4 — 1) =det[> 7" 2] = (3-1)(-1) - (-2)(1) = 12 = 31+ 2

1P —3i+2=(L-2)(—1)

=i, =2 l,=1

Step 2: Compute the eigenvector for i, = 2.

L _[3-2 —2]:[1 —2]
A2l [ 1 —2 1 -2
[l -2 | 'D] N [l -2 | 'D]
1 -2 | 0 o o | 0
1 —2 0
- L 2
xy = 2x, = [L]—lj[l]
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Step 3: Compute the eigenvector for i, = 1.

T e e

—1 1 -1
[2 -2 | 'D] . [2 -2 | 'D]
1 -1 | © o 0o | O
2 —2 0
li[ﬂ]_l:[ﬂ]:[ﬂ] = 2y —2x,=0 = x;=x,
.
e = [

Step 4: Construct the bases.
Basisfori, =2isv, = [2] and basis for j., = 1iswv, = H
1 . =l

Do you know?
In many cases, the eigenvalues-eigenvector information contained

within a matrix A can be displayed in a useful factorization of the form
A = PDP™, The factorization enables the computation of 4% quickly

for large values of k that can be used in performing linear
transformation. The D in the factorization stands for diagonal.

Unfortunately, not all matrices can be factored as 4 = pPDP™?.
However, a factorization A = @DP ™1 is possible for any m x n matrix

A.  This special factorization is called the singular value
decomposition.

Example 26: Find the eigenvalues and determine whether the Jacobi and Gauss-Seidel
methods of the Example 22 converge for all the initial guesses.

3u+v=>5
u+2v=>5

i 2 el
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For Jacobi method:

1
3 0 3 %3 17 |1 %
Q=|0 2|, Q*A=| 1|1 2]=
0 3 1
2
0 —% o 1 2ol |2 1
B=1-Q1A= B-Al=| 3{0 J— . 3
2 0 20 -}
2 2 2
5t ,
det(B — A1) = det 3l_,42_2
1 6
]
2

A= J_r\/% , spectral radius p= \/% < 1. Thus, by the Spectral Radius Theorem, the

Jacobi method succeeds for any starting initial vector in this example.

For Gauss-Seidel method:

1
3 0 3 %3 17 |1 %
Q=[1 2J,Q7A=| 1 11 2J5 |
0 —
6 2 -
0 —% o -1 R !
B=1-Q%A=| | B-al- 13 {0 J: . 3
0 = 0 = 0 ~-2
6 6 6
2 _% .
det(B — A1) = det . :12—6/1
0 =-21
6

A= O,% , spectral radius p= % < 1. Thus, by the Spectral Radius Theorem, the Gauss-

Seidel method succeeds for any starting initial vector in this example.

KCY/NOORSHAHIDA/THL Page | 39



